OpenBSD manual page server

Manual Page Search Parameters

EC_GROUP_NEW(3) Library Functions Manual EC_GROUP_NEW(3)

EC_GROUP_new, EC_GROUP_free, EC_GROUP_clear_free, EC_GROUP_new_curve_GFp, EC_GROUP_new_curve_GF2m, EC_GROUP_new_by_curve_name, EC_GROUP_set_curve, EC_GROUP_get_curve, EC_GROUP_set_curve_GFp, EC_GROUP_get_curve_GFp, EC_GROUP_set_curve_GF2m, EC_GROUP_get_curve_GF2m, EC_get_builtin_curvescreate and destroy EC_GROUP objects

#include <openssl/ec.h>
#include <openssl/bn.h>

EC_GROUP_new(const EC_METHOD *meth);

EC_GROUP_free(EC_GROUP *group);

EC_GROUP_clear_free(EC_GROUP *group);

EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);

EC_GROUP_new_curve_GF2m(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);

EC_GROUP_new_by_curve_name(int nid);

EC_GROUP_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);

EC_GROUP_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);

EC_GROUP_set_curve_GFp(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);

EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);

EC_GROUP_set_curve_GF2m(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);

EC_GROUP_get_curve_GF2m(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);

EC_get_builtin_curves(EC_builtin_curve *r, size_t nitems);

The EC library provides functions for performing operations on elliptic curves over finite fields. In general, an elliptic curve satisfies an equation of the form:

y^2 = x^3 + ax + b

Within the library there are two forms of elliptic curves that are of interest. The first form is those defined over the prime field Fp. The elements of Fp are the integers 0 to p-1, where p is a prime number. This gives us a revised elliptic curve equation as follows:

y^2 mod p = x^3 + ax + b mod p

The second form is those defined over a binary field F2^m where the elements of the field are integers of length at most m bits. For this form the elliptic curve equation is modified to:

y^2 + xy = x^3 + ax^2 + b (where b != 0)

Operations in a binary field are performed relative to an irreducible polynomial. All such curves with OpenSSL use a trinomial or a pentanomial for this parameter.

An EC_GROUP structure is used to represent the definition of an elliptic curve. A new curve can be constructed by calling (), using the implementation provided by meth (see EC_GFp_simple_method(3)). It is then necessary to call EC_GROUP_set_curve() to set the curve parameters.

() sets the curve parameters p, a, and b. For a curve over Fp, p is the prime for the field. For a curve over F2^m p represents the irreducible polynomial - each bit represents a term in the polynomial. Therefore, there will either be three or five bits set dependent on whether the polynomial is a trinomial or a pentanomial. In either case, a and b represent the coefficients of the curve equation.

() and () are deprecated synonyms for EC_GROUP_set_curve().

() obtains the previously set curve parameters.

() and () are deprecated synonyms for EC_GROUP_get_curve().

The functions () and () are shortcuts for calling EC_GROUP_new() and the appropriate () function. An appropriate default implementation method will be used.

Whilst the library can be used to create any curve using the functions described above, there are also a number of predefined curves that are available. In order to obtain a list of all of the predefined curves, call the function (). The parameter r should be an array of EC_builtin_cure structures of size nitems. The function will populate the r array with information about the builtin curves. If nitems is less than the total number of curves available, then the first nitems curves will be returned. Otherwise the total number of curves will be provided. The return value is the total number of curves available (whether that number has been populated in r or not). Passing a NULL r, or setting nitems to 0, will do nothing other than return the total number of curves available. The EC_builtin_curve structure is defined as follows:

typedef struct {
	int nid;
	const char *comment;
} EC_builtin_curve;

Each EC_builtin_curve item has a unique integer ID (nid) and a human readable comment string describing the curve.

In order to construct a builtin curve, use the function () and provide the nid of the curve to be constructed.

() frees the memory associated with the EC_GROUP. If group is a NULL pointer, no action occurs.

() destroys any sensitive data held within the EC_GROUP and then frees its memory. If group is a NULL pointer, no action occurs.

All EC_GROUP_new*() functions return a pointer to the newly constructed group or NULL on error.

EC_get_builtin_curves() returns the number of builtin curves that are available.

EC_GROUP_set_curve(), EC_GROUP_get_curve(), EC_GROUP_set_curve_GFp(), EC_GROUP_get_curve_GFp(), EC_GROUP_set_curve_GF2m(), and EC_GROUP_get_curve_GF2m() return 1 on success or 0 on error.

crypto(3), d2i_ECPKParameters(3), EC_GFp_simple_method(3), EC_GROUP_copy(3), EC_KEY_new(3), EC_POINT_add(3), EC_POINT_new(3), ECDH_compute_key(3), ECDSA_SIG_new(3)

EC_GROUP_new(), EC_GROUP_free(), EC_GROUP_clear_free(), EC_GROUP_new_curve_GFp(), EC_GROUP_set_curve_GFp(), and EC_GROUP_get_curve_GFp() first appeared in OpenSSL 0.9.7 and have been available since OpenBSD 3.2.

EC_GROUP_new_curve_GF2m(), EC_GROUP_new_by_curve_name(), EC_GROUP_set_curve_GF2m(), EC_GROUP_get_curve_GF2m(), and EC_get_builtin_curves() first appeared in OpenSSL 0.9.8 and have been available since OpenBSD 4.5. EC_GROUP_set_curve() and EC_GROUP_get_curve() first appeared in OpenSSL 1.1.1 and have been available since OpenBSD 7.0.

March 31, 2022 OpenBSD-7.1