NAME
get_rfc2409_prime_768
,
get_rfc2409_prime_1024
,
get_rfc3526_prime_1536
,
get_rfc3526_prime_2048
,
get_rfc3526_prime_3072
,
get_rfc3526_prime_4096
,
get_rfc3526_prime_6144
,
get_rfc3526_prime_8192
,
BN_get_rfc2409_prime_768
,
BN_get_rfc2409_prime_1024
,
BN_get_rfc3526_prime_2048
,
BN_get_rfc3526_prime_3072
,
BN_get_rfc3526_prime_4096
,
BN_get_rfc3526_prime_6144
,
BN_get_rfc3526_prime_8192
—
standard moduli for Diffie-Hellmann key
exchange
SYNOPSIS
#include
<openssl/bn.h>
BIGNUM *
get_rfc2409_prime_768
(BIGNUM
*bn);
BIGNUM *
get_rfc2409_prime_1024
(BIGNUM
*bn);
BIGNUM *
get_rfc3526_prime_1536
(BIGNUM
*bn);
BIGNUM *
get_rfc3526_prime_2048
(BIGNUM
*bn);
BIGNUM *
get_rfc3526_prime_3072
(BIGNUM
*bn);
BIGNUM *
get_rfc3526_prime_4096
(BIGNUM
*bn);
BIGNUM *
get_rfc3526_prime_6144
(BIGNUM
*bn);
BIGNUM *
get_rfc3526_prime_8192
(BIGNUM
*bn);
BIGNUM *
BN_get_rfc2409_prime_768
(BIGNUM
*bn);
BIGNUM *
BN_get_rfc2409_prime_1024
(BIGNUM
*bn);
BIGNUM *
BN_get_rfc3526_prime_1536
(BIGNUM
*bn);
BIGNUM *
BN_get_rfc3526_prime_2048
(BIGNUM
*bn);
BIGNUM *
BN_get_rfc3526_prime_3072
(BIGNUM
*bn);
BIGNUM *
BN_get_rfc3526_prime_4096
(BIGNUM
*bn);
BIGNUM *
BN_get_rfc3526_prime_6144
(BIGNUM
*bn);
BIGNUM *
BN_get_rfc3526_prime_8192
(BIGNUM
*bn);
DESCRIPTION
Each of these functions returns one specific constant Sophie Germain prime number p. The names with the prefix ‘BN_’ are aliases for the names without that prefix.
If bn is NULL
, a new
BIGNUM object is created and returned. Otherwise, the
number is stored in *bn and bn
is returned.
All these numbers are of the form
where s is the size of the binary representation of the number in bits and appears at the end of the function names. As long as the offset is sufficiently small, the above form assures that the top and bottom 64 bits of each number are all 1.
The offsets are defined in the standards as follows:
size s | offset |
768 = 3 * 2^8 | 149686 |
1024 = 2 * 2^9 | 129093 |
1536 = 3 * 2^9 | 741804 |
2048 = 2 * 2^10 | 124476 |
3072 = 3 * 2^10 | 1690314 |
4096 = 2 * 2^11 | 240904 |
6144 = 3 * 2^11 | 929484 |
8192 = 2 * 2^12 | 4743158 |
For each of these prime numbers, the finite group of natural numbers smaller than p, where the group operation is defined as multiplication modulo p, is used for Diffie-Hellmann key exchange. The first two of these groups are called the First Oakley Group and the Second Oakley Group. Obiviously, all these groups are cyclic groups of order p, respectively, and the numbers returned by these functions are not secrets.
RETURN VALUES
If memory allocation fails, these functions return
NULL
. That can happen even if
bn is not NULL
.
SEE ALSO
STANDARDS
RFC 2409, "The Internet Key Exchange (IKE)", defines the Oakley Groups.
RFC 2412, "The OAKLEY Key Determination Protocol", contains additional information about these numbers.
RFC 3526, "More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE)", defines the other six numbers.
HISTORY
get_rfc2409_prime_768
(),
get_rfc2409_prime_1024
(),
get_rfc3526_prime_1536
(),
get_rfc3526_prime_2048
(),
get_rfc3526_prime_3072
(),
get_rfc3526_prime_4096
(),
get_rfc3526_prime_6144
(), and
get_rfc3526_prime_8192
() first appeared in OpenSSL
0.9.8a and have been available since OpenBSD
4.5.
The BN_ aliases first appeared in OpenSSL 1.1.0 and have been available since OpenBSD 6.3.
CAVEATS
As all the memory needed for storing the numbers is dynamically
allocated, the BN_FLG_STATIC_DATA
flag is not set on
the returned BIGNUM objects. So be careful to not
change the returned numbers.