NAME
EVP_MD_CTX_init
,
EVP_MD_CTX_create
,
EVP_MD_CTX_ctrl
,
EVP_DigestInit_ex
,
EVP_DigestUpdate
,
EVP_DigestFinal_ex
,
EVP_MD_CTX_cleanup
,
EVP_MD_CTX_destroy
,
EVP_MD_CTX_copy_ex
,
EVP_DigestInit
,
EVP_DigestFinal
,
EVP_MD_CTX_copy
,
EVP_MAX_MD_SIZE
,
EVP_MD_type
,
EVP_MD_pkey_type
,
EVP_MD_size
,
EVP_MD_block_size
,
EVP_MD_CTX_md
,
EVP_MD_CTX_size
,
EVP_MD_CTX_block_size
,
EVP_MD_CTX_type
,
EVP_md_null
, EVP_md2
,
EVP_md5
, EVP_md5_sha1
,
EVP_sha1
, EVP_sha224
,
EVP_sha256
, EVP_sha384
,
EVP_sha512
, EVP_dss
,
EVP_dss1
, EVP_ripemd160
,
EVP_get_digestbyname
,
EVP_get_digestbynid
,
EVP_get_digestbyobj
—
EVP digest routines
SYNOPSIS
#include
<openssl/evp.h>
void
EVP_MD_CTX_init
(EVP_MD_CTX
*ctx);
EVP_MD_CTX *
EVP_MD_CTX_create
(void);
void
EVP_MD_CTX_ctrl
(EVP_MD_CTX *ctx,
int cmd, int p1,
void* p2);
int
EVP_DigestInit_ex
(EVP_MD_CTX
*ctx, const EVP_MD *type, ENGINE
*impl);
int
EVP_DigestUpdate
(EVP_MD_CTX
*ctx, const void *d, size_t
cnt);
int
EVP_DigestFinal_ex
(EVP_MD_CTX
*ctx, unsigned char *md,
unsigned int *s);
int
EVP_MD_CTX_cleanup
(EVP_MD_CTX
*ctx);
void
EVP_MD_CTX_destroy
(EVP_MD_CTX
*ctx);
int
EVP_MD_CTX_copy_ex
(EVP_MD_CTX
*out, const EVP_MD_CTX *in);
int
EVP_DigestInit
(EVP_MD_CTX *ctx,
const EVP_MD *type);
int
EVP_DigestFinal
(EVP_MD_CTX *ctx,
unsigned char *md, unsigned int
*s);
int
EVP_MD_CTX_copy
(EVP_MD_CTX *out,
EVP_MD_CTX *in);
#define EVP_MAX_MD_SIZE 64 /* SHA512
*/
int
EVP_MD_type
(const EVP_MD
*md);
int
EVP_MD_pkey_type
(const EVP_MD
*md);
int
EVP_MD_size
(const EVP_MD
*md);
int
EVP_MD_block_size
(const EVP_MD
*md);
const EVP_MD *
EVP_MD_CTX_md
(const EVP_MD_CTX
*ctx);
int
EVP_MD_CTX_size
(const EVP_MD
*ctx);
int
EVP_MD_CTX_block_size
(const EVP_MD
*ctx);
int
EVP_MD_CTX_type
(const EVP_MD
*ctx);
const EVP_MD *
EVP_md_null
(void);
const EVP_MD *
EVP_md2
(void);
const EVP_MD *
EVP_md5
(void);
const EVP_MD *
EVP_md5_sha1
(void);
const EVP_MD *
EVP_sha1
(void);
const EVP_MD *
EVP_sha224
(void);
const EVP_MD *
EVP_sha256
(void);
const EVP_MD *
EVP_sha384
(void);
const EVP_MD *
EVP_sha512
(void);
const EVP_MD *
EVP_dss
(void);
const EVP_MD *
EVP_dss1
(void);
const EVP_MD *
EVP_ripemd160
(void);
const EVP_MD *
EVP_get_digestbyname
(const char
*name);
const EVP_MD *
EVP_get_digestbynid
(int
type);
const EVP_MD *
EVP_get_digestbyobj
(const ASN1_OBJECT
*o);
DESCRIPTION
The EVP digest routines are a high level interface to message digests.
EVP_MD_CTX_init
()
initializes the digest context ctx.
EVP_MD_CTX_create
()
allocates, initializes, and returns a digest context.
EVP_MD_CTX_ctrl
()
performs digest-specific control actions on the context
ctx.
EVP_DigestInit_ex
()
sets up digest context ctx to use a digest
type from ENGINE
impl. ctx must be initialized
before calling this function. type will typically be
supplied by a function such as
EVP_sha1
().
If impl is NULL
, then the
default implementation of digest type is used.
EVP_DigestUpdate
()
hashes cnt bytes of data at d
into the digest context ctx. This function can be
called several times on the same ctx to hash
additional data.
EVP_DigestFinal_ex
()
retrieves the digest value from ctx and places it in
md. If the s parameter is not
NULL
, then the number of bytes of data written (i.e.
the length of the digest) will be written to the integer at
s; at most EVP_MAX_MD_SIZE
bytes will be written. After calling
EVP_DigestFinal_ex
(), no additional calls to
EVP_DigestUpdate
() can be made, but
EVP_DigestInit_ex
() can be called to initialize a
new digest operation.
EVP_MD_CTX_cleanup
()
cleans up the digest context ctx. It should be called
after a digest context is no longer needed.
EVP_MD_CTX_destroy
()
cleans up the digest context ctx and frees up the
space allocated to it. It should be called only on a context created using
EVP_MD_CTX_create
().
EVP_MD_CTX_copy_ex
()
can be used to copy the message digest state from in
to out. This is useful if large amounts of data are to
be hashed which only differ in the last few bytes. out
must be initialized before calling this function.
EVP_DigestInit
()
behaves in the same way as EVP_DigestInit_ex
()
except the passed context ctx does not have to be
initialized, and it always uses the default digest implementation.
EVP_DigestFinal
()
is similar to EVP_DigestFinal_ex
() except the digest
context ctx is automatically cleaned up.
EVP_MD_CTX_copy
()
is similar to EVP_MD_CTX_copy_ex
() except the
destination out does not have to be initialized.
EVP_MD_size
()
and EVP_MD_CTX_size
() return the size of the message
digest when passed an EVP_MD or an
EVP_MD_CTX structure, i.e. the size of the hash.
EVP_MD_block_size
()
and
EVP_MD_CTX_block_size
()
return the block size of the message digest when passed an
EVP_MD or an EVP_MD_CTX
structure.
EVP_MD_type
()
and
EVP_MD_CTX_type
()
return the NID of the OBJECT IDENTIFIER representing the given message
digest when passed an EVP_MD structure. For example
EVP_MD_type
(EVP_sha1())
returns NID_sha1
. This function is normally used
when setting ASN.1 OIDs.
EVP_MD_CTX_md
()
returns the EVP_MD structure corresponding to the
passed EVP_MD_CTX.
EVP_MD_pkey_type
()
returns the NID of the public key signing algorithm associated with this
digest. For example
EVP_sha1
()
is associated with RSA so this will return
NID_sha1WithRSAEncryption
. Since digests and
signature algorithms are no longer linked this function is only retained for
compatibility reasons.
EVP_md2
(),
EVP_md5
(),
EVP_sha1
(),
EVP_sha224
(),
EVP_sha256
(),
EVP_sha384
(),
EVP_sha512
(),
and
EVP_ripemd160
()
return EVP_MD structures for the MD2, MD5, SHA1,
SHA224, SHA256, SHA384, SHA512 and RIPEMD160 digest algorithms
respectively.
EVP_md5_sha1
()
returns an EVP_MD structure that provides concatenated
MD5 and SHA1 message digests.
EVP_dss
()
and
EVP_dss1
()
return EVP_MD structures for SHA1 digest algorithms
but using DSS (DSA) for the signature algorithm. Note: there is no need to
use these pseudo-digests in OpenSSL 1.0.0 and later; they are however
retained for compatibility.
EVP_md_null
()
is a "null" message digest that does nothing: i.e. the hash it
returns is of zero length.
EVP_get_digestbyname
(),
EVP_get_digestbynid
(),
and
EVP_get_digestbyobj
()
return an EVP_MD structure when passed a digest name,
a digest NID, or an ASN1_OBJECT structure respectively. The digest table
must be initialized using, for example,
OpenSSL_add_all_digests(3) for these functions to work.
EVP_MD_CTX_size
(),
EVP_MD_CTX_block_size
(),
EVP_MD_CTX_type
(),
EVP_get_digestbynid
(), and
EVP_get_digestbyobj
() are implemented as macros.
The EVP interface to message digests should almost always be used in preference to the low level interfaces. This is because the code then becomes transparent to the digest used and much more flexible.
New applications should use the SHA2 digest algorithms such as SHA256. The other digest algorithms are still in common use.
For most applications the
impl parameter to
EVP_DigestInit_ex
()
will be set to NULL to use the default digest implementation.
The functions
EVP_DigestInit
(),
EVP_DigestFinal
(), and
EVP_MD_CTX_copy
() are obsolete but are retained to
maintain compatibility with existing code. New applications should use
EVP_DigestInit_ex
(),
EVP_DigestFinal_ex
(), and
EVP_MD_CTX_copy_ex
() because they can efficiently
reuse a digest context instead of initializing and cleaning it up on each
call and allow non-default implementations of digests to be specified.
In OpenSSL 0.9.7 and later if digest contexts are not cleaned up after use memory leaks will occur.
Stack allocation of EVP_MD_CTX structures is common, for example:
EVP_MD_CTX mctx; EVP_MD_CTX_init(&mctx);
This will cause binary compatibility
issues if the size of EVP_MD_CTX structure changes
(this will only happen with a major release of OpenSSL). Applications
wishing to avoid this should use
EVP_MD_CTX_create
()
instead:
EVP_MD_CTX *mctx; mctx = EVP_MD_CTX_create();
RETURN VALUES
EVP_MD_CTX_ctrl
(),
EVP_DigestInit_ex
(),
EVP_DigestUpdate
(),
EVP_DigestFinal_ex
(), and
EVP_MD_CTX_copy_ex
() return 1 for success or 0 for
failure.
EVP_MD_type
(),
EVP_MD_pkey_type
(), and
EVP_MD_type
() return the NID of the corresponding
OBJECT IDENTIFIER or NID_undef
if none exists.
EVP_MD_size
(),
EVP_MD_block_size
(),
EVP_MD_CTX_size
(), and
EVP_MD_CTX_block_size
() return the digest or block
size in bytes.
EVP_md_null
(),
EVP_md2
(), EVP_md5
(),
EVP_md5_sha1
(), EVP_sha1
(),
EVP_dss
(), EVP_dss1
(), and
EVP_ripemd160
() return pointers to the corresponding
EVP_MD structures.
EVP_get_digestbyname
(),
EVP_get_digestbynid
(), and
EVP_get_digestbyobj
() return either an
EVP_MD structure or NULL
if an
error occurs.
EXAMPLES
This example digests the data "Test Message\n" and "Hello World\n", using the digest name passed on the command line.
#include <stdio.h> #include <openssl/evp.h> int main(int argc, char *argv[]) { EVP_MD_CTX *mdctx; const EVP_MD *md; const char mess1[] = "Test Message\n"; const char mess2[] = "Hello World\n"; unsigned char md_value[EVP_MAX_MD_SIZE]; int md_len, i; OpenSSL_add_all_digests(); if (argc <= 1) { printf("Usage: mdtest digestname\n"); exit(1); } md = EVP_get_digestbyname(argv[1]); if (md == NULL) { printf("Unknown message digest %s\n", argv[1]); exit(1); } mdctx = EVP_MD_CTX_create(); EVP_DigestInit_ex(mdctx, md, NULL); EVP_DigestUpdate(mdctx, mess1, strlen(mess1)); EVP_DigestUpdate(mdctx, mess2, strlen(mess2)); EVP_DigestFinal_ex(mdctx, md_value, &md_len); EVP_MD_CTX_destroy(mdctx); printf("Digest is: "); for(i = 0; i < md_len; i++) printf("%02x", md_value[i]); printf("\n"); }
SEE ALSO
HISTORY
EVP_DigestInit
(),
EVP_DigestUpdate
(), and
EVP_DigestFinal
() are available in all versions of
SSLeay and OpenSSL.
EVP_MD_CTX_init
(),
EVP_MD_CTX_create
(),
EVP_MD_CTX_copy_ex
(),
EVP_MD_CTX_cleanup
(),
EVP_MD_CTX_destroy
(),
EVP_DigestInit_ex
(), and
EVP_DigestFinal_ex
() were added in OpenSSL
0.9.7.
EVP_md_null
(),
EVP_md2
(), EVP_md5
(),
EVP_sha1
(), EVP_dss
(),
EVP_dss1
(), and
EVP_ripemd160
() were changed to return truly const
EVP_MD pointers in OpenSSL 0.9.7.
The link between digests and signing algorithms was fixed in
OpenSSL 1.0 and later, so now EVP_sha1
() can be used
with RSA and DSA; there is no need to use EVP_dss1
()
any more.
OpenSSL 1.0 and later does not include the MD2 digest algorithm in the default configuration due to its security weaknesses.