BRIDGE(4) OpenBSD Programmer's Manual BRIDGE(4) NAME bridge - Ethernet bridge interface SYNOPSIS pseudo-device bridge 2 DESCRIPTION The bridge device creates a logical link between two or more Ethernet in- terfaces or encapsulation interfaces (see gif(4)). This link between the interfaces selectively forwards frames from each interface on the bridge to every other interface on the bridge. A bridge can serve several ser- vices, including isolation of traffic between sets of machines so that traffic local to one set of machines is not available on the wire of an- other set of machines, and it can act as a transparent filter for ip(4) datagrams. The bridges provided by this interface are learning bridges with filter- ing, see pf(4). In general a bridge works like a hub, forwarding traffic from one interface to another. It differs from a hub in that it will "learn" which machines are on each of its attached segments by actively listening to incoming traffic and examining the headers of each frame. A table is built containing the MAC address and segment to which the MAC address is attached. This allows a bridge to be more selective about what it forwards, which can be used to reduce traffic on a set of seg- ments and also to provide an IP firewall without changing the topology of the network. The algorithm works as follows by default, but can be modified via ioctl(2) or the utility brconfig(8). When a frame comes in, the origin segment and the source address are recorded. If the bridge has no knowl- edge about where the destination is to be found, the bridge will forward the frame to all attached segments. If the destination is known to be on a different segment from its origin, the bridge will forward the packet only to the destination segment. If the destination is on the same seg- ment as the origin segment, the bridge will drop the packet because the receiver has already had a chance to see the frame. Before forwarding a frame, the bridge will check to see if the packet contains an ip(4) or ip6(4) datagram; if so, the datagram is run through the pf(4) interface so that it can be filtered. IOCTLS A bridge interface responds to all of the ioctl(2) calls specific to oth- er interfaces listed in netintro(4). The following ioctl(2) calls are specific to bridge devices. They are defined in <sys/sockio.h>. SIOCBRDGIFS (struct ifbifconf) Retrieve member interface list from a bridge. This request takes an ifbifconf structure (see below) as a value-result parameter. The ifbic_len field should be initially set to the size of the buffer point- ed to by ifbic_buf. On return it will contain the length, in bytes, of the configuration list. Alterna- tively, if the ifbic_len passed in is set to 0, SIOCBRDGIFS will set ifbic_len to the size that ifbic_buf needs to be to fit the entire configuration list, and will not fill in the other parameters. This is useful for determining the exact size that ifbic_buf needs to be in advance. The argument structure is defined as follows: struct ifbreq { char ifbr_name[IFNAMSIZ]; /* brdg nam */ char ifbr_ifsname[IFNAMSIZ]; /* if name */ u_int32_t ifbr_ifsflags; /* if flags */ }; #define IFBIF_LEARNING 0x1 /* learns addrs */ #define IFBIF_DISCOVER 0x2 /* gets fwd'd pkts */ struct ifbifconf { char ifbic_name[IFNAMSIZ]; /* brdg name */ u_int32_t ifbic_len; /* buf size */ union { caddr_t ifbicu_buf; /* buffer */ struct ifbreq *ifbicu_req; } ifbic_ifbicu; #define ifbic_buf ifbic_ifbicu.ifbicu_buf #define ifbic_req ifbic_ifbicu.ifbicu_req }; SIOCBRDGADD (struct ifbreq) Add the interface named in ifbr_ifsname to the bridge named in ifbr_name. SIOCBRDGDEL (struct ifbreq) Delete the interface named in ifbr_ifsname from the bridge named in ifbr_name. SIOCBRDGADDS (struct ifbreq) Add the interface named in ifbr_ifsname as a span port to the bridge named in ifbr_name. SIOCBRDGDELS (struct ifbreq) Delete the interface named in ifbr_ifsname from the list of span ports of the bridge named in ifbr_name. SIOCBRDGSIFFLGS (struct ifbreq) Set the bridge member interface flags for the interface named in ifbr_ifsname attached to the bridge ifbr_name. If the flag IFBIF_LEARNING is set on an interface, source addresses from frames received on the interface are recorded in the address cache. If the flag IFBIF_DISCOVER is set, the interface will receive packets destined for unknown destinations, otherwise a frame that has a destination not found in the address cache is not forwarded to this interface. The default for newly added interfaces has both flags set. If the flag IFBIF_BLOCKNONIP is set, packets that are one of ip(4), ip6(4), arp(4), or Reverse ARP, will not be bridged from and to the interface. SIOCBRDGGIFFLGS Retrieve the bridge member interface flags for the in- terface named in ifbr_ifsname attached to the bridge ifbr_name. SIOCBRDGRTS (struct ifbaconf) Retrieve the address cache of the bridge named in ifbac_name. This request takes an ifbaconf structure (see below) as a value result parame- ter. The ifbac_len field should be initially set to the size of the buffer pointed to by ifbac_buf. On return, it will contain the length, in bytes, of the configura- tion list. Alternatively, if the ifbac_len passed in is set to 0, SIOCBRDGRTS will set it to the size that ifbac_buf needs to be to fit the entire configuration list and not fill in the other parameters. As with SIOCBRDGIFS, this is useful for determining the exact size that ifbac_buf needs to be in advance. The argument structure is defined as follows: struct ifbareq { char ifba_name[IFNAMSIZ]; /* brdg nam */ char ifba_ifsname[IFNAMSIZ];/* dest ifs */ u_int8_t ifba_age; /* addr age */ u_int8_t ifba_flags; /* addr flag */ struct ether_addr ifba_dst; /* dst addr */ }; #define IFBAF_TYPEMASK 0x03 /* addr type mask */ #define IFBAF_DYNAMIC 0x00 /* dynamic addr */ #define IFBAF_STATIC 0x01 /* static address */ struct ifbaconf { char ifbac_name[IFNAMSIZ]; /* brdg name */ u_int32_t ifbac_len; /* buf size */ union { caddr_t ifbacu_buf; /* buf */ struct ifbareq *ifbacu_req; } ifbac_ifbacu; #define ifbac_buf ifbac_ifbacu.ifbacu_buf #define ifbac_req ifbac_ifbacu.ifbacu_req }; Address cache entries with the type set to IFBAF_DYNAMIC in ifba_flags are entries learned by the bridge. En- tries with the type set to IFBAF_STATIC are manually added entries. SIOCBRDGSADDR (struct ifbareq) Add an entry, manually, to the address cache for the bridge named in ifba_name. The address and its associated interface and flags are set in the ifba_dst, ifba_ifsname, and ifba_flags fields, respec- tively. SIOCBRDGDADDR (struct ifbareq) Delete an entry from the address cache of the bridge named in ifba_name. Entries are deleted strictly based on the address field ifba_dst. SIOCBRDGSCACHE (struct ifbcachereq) Set the maximum address cache size for the bridge named in ifbc_name to ifbc_size entries. The argument structure is as follows: struct ifbcachereq { char ifbc_name[IFNAMSIZ]; /* bridge */ u_int32_t ifbc_size; /* size */ }; SIOCBRDGGCACHE (struct ifbcachereq) Retrieve the maximum size of the address cache for the bridge ifbc_name. SIOCBRDGSTO (struct ifbcachetoreq) Set the time, in seconds, that addresses which have not been seen on the network (transmitted a packet) remain in the cache. If the time is set to zero, no aging is performed on the address cache. The argument structure is as follows: struct ifbcachetoreq { char ifbct_name[IFNAMSIZ]; /* bridge */ u_int32_t ifbct_time; /* time */ }; SIOCBRDGGTO (struct ifbcachetoreq) Retrieve the address cache expi- ration time (see above). SIOCBRDGFLUSH (struct ifbreq) Flush addresses from the cache. ifbr_name contains the name of the bridge device, and ifbr_ifsflags should be set to IFBF_FLUSHALL to flush all addresses from the cache or IFBF_FLUSHDYN to flush only the dynamically learned addresses from the cache. SIOCBRDGARL (struct ifbrlreq) Add an Ethernet address filtering rule to the bridge on a specific interface. ifbr_name con- tains the name of the bridge device, and ifbr_ifsname contains the name of the bridge member interface. The ifbr_action field is one of BRL_ACTION_PASS or BRL_ACTION_BLOCK, to pass or block matching frames re- spectively. The ifbr_flags specifies whether the rule should match on input, output, or both be using the flags BRL_FLAG_IN and BRL_FLAG_OUT. It also specifies whether either (or both) of the source and destination addresses should be matched by using the BRL_FLAG_SRCVALID and BRL_FLAG_DSTVALID flags. The ifbr_src field is the source address that triggers the rule (only considered if ifbr_flags has the BRL_FLAG_SRCVALID bit set). The ifbr_src field is the destination address that triggers the rule (only consid- ered if ifbr_flags has the BRL_FLAG_DSTVALID bit set). The argument structure is as follows: struct ifbrlreq { char ifbr_name[IFNAMSIZ]; char ifbr_ifsname[IFNAMSIZ]; u_int8_t ifbr_action; u_int8_t ifbr_flags; struct ether_addr ifbr_src; struct ether_addr ifbr_dst; char ifbr_tagname[PF_TAG_NAME_SIZE]; }; #define BRL_ACTION_BLOCK 0x01 #define BRL_ACTION_PASS 0x02 #define BRL_FLAG_IN 0x08 #define BRL_FLAG_OUT 0x04 SIOCBRDGFRL (struct ifbrlreq) Remove all filtering rules from a bridge interface member. ifbr_name contains the name of the bridge device, and ifbr_ifsname contains the name of the bridge member interface. SIOCBRDGGRL (struct ifbrlconf) Retrieve all of the rules from the bridge, ifbrl_name, for the member interface, ifbrl_ifsname. This request takes an ifbrlconf struc- ture (see below) as a value result parameter. The ifbrl_len field should be initially set to the size of the buffer pointed to by ifbrl_buf. On return, it will contain the length, in bytes, of the configuration list. Alternatively, if the ifbrl_len passed in is set to 0, SIOCBRDGGRL will set it to the size that ifbrl_buf needs to be to fit the entire configuration list and not fill in the other parameters. As with SIOCBRDGIFS, this is useful for determining the exact size that ifbrl_buf needs to be in advance. The argument structure is defined as follows: struct ifbrlconf { char ifbrl_name[IFNAMSIZ]; /* brdg nam */ char ifbrl_ifsname[IFNAMSIZ];/* ifs name */ u_int32_t ifbr_len; /* buf len */ union { caddr_t ifbrlu_buf; struct ifbrlreq *ifbrlu_req; } ifrl_ifbrlu; #define ifbrl_buf ifbrl_ifbrlu.ifbrlu_buf #define ifbrl_req ifbrl_ifbrlu.ifbrlu_req }; SIOCBRDGARL (struct ifbrlreq) Add a filtering rule to the bridge named in ifbr_name on the interface named in ifbr_ifsname. The argument structure is as follows: struct ifbrlreq { char ifbr_name[IFNAMSIZ]; /* bridge */ char ifbr_ifsname[IFNAMSIZ]; /* ifs */ u_int8_t ifbr_action; /* handling */ u_int8_t ifbr_flags; /* flags */ struct ether_addr ifbr_src; /* src mac */ struct ether_addr ifbr_dst; /* dst mac */ }; #define BRL_ACTION_BLOCK 0x01 #define BRL_ACTION_PASS 0x02 #define BRL_FLAG_IN 0x08 #define BRL_FLAG_OUT 0x04 #define BRL_FLAG_SRCVALID 0x02 #define BRL_FLAG_DSTVALID 0x01 Rules are applied in the order in which they were added to the bridge, and the first matching rule's action pa- rameter determines the fate of the packet. The ifbr_action parameter specifies whether a frame matching the rule is to be blocked or passed. If the BRL_FLAG_IN bit is set in ifbr_flags, then the rule applies to frames received by the interface. If the BRL_FLAG_OUT bit is set, then the rule applies to frame transmitted by the interface. At least one of BRL_FLAG_IN or BRL_FLAG_OUT must be set. The source Ethernet address in ifbr_src is checked if the BRL_FLAG_SRCVALID bit is set in ifbr_flags. The destination address in ifbr_dst is checked if the BRL_FLAG_DSTVALID bit is set. If neither bit is set, the rule matches all frames. SIOCBRDGFRL (struct ifbrlreq) Flush rules from the bridge ifbr_name on the interface ifbr_ifsname. SIOCBRDGGRL (struct ifbrlconf) Retrieve an array of rules from the bridge for a particular interface. This request takes an ifbrlconf structure (see below) as a value-result pa- rameter. The ifbrl_len field should be initially set to the size of the buffer pointed to by ifbrl_buf. On re- turn it will contain the length, in bytes, of the rule list. Alternatively, if the ifbrl_len passed in is set to 0, SIOCBRDGGRL will set ifbrl_len to the size that ifbrl_buf needs to be to fit the entire configuration list, and will not fill in the other parameters. This is useful for determining the exact size that ifbrl_buf needs to be in advance. The argument structure is as follows: struct ifbrlconf { char ifbrl_name[IFNAMSIZ]; /* bridge */ char ifbrl_ifsname[IFNAMSIZ];/* member */ u_int32_t ifbrl_len; /* buflen */ union { caddr_t ifbrlu_buf; struct ifbrlreq *ifbrlu_req; } ifbrl_ifbrlu; #define ifbrl_buf ifbrl_ifbrlu.ifbrlu_buf #define ifbrl_req ifbrl_ifbrlu.ifbrlu_req }; ERRORS If the ioctl(2) call fails, errno(2) is set to one of the following val- ues: [ENOENT] For an add request, this means that the named interface is not configured into the system. For a delete operation, it means that the named interface is not a member of the bridge. For an address cache deletion, the address was not found in the table. [ENOMEM] Memory could not be allocated for an interface or cache en- try to be added to the bridge. [EEXIST] The named interface is already a member of the bridge. [EBUSY] The named interface is already a member of another bridge. [EINVAL] The named interface is not an Ethernet interface or an in- valid ioctl was performed on the bridge. [ENETDOWN] Address cache operation (flush, add, delete) on a bridge that is in the down state. [EPERM] Super-user privilege is required to add and delete inter- faces to and from bridges and to set the bridge interface flags. [EFAULT] The buffer used in a SIOCBRDGIFS or SIOCBRDGRTS request points outside of the process's allocated address space. [ESRCH] No such member interface in the bridge. NOTES Bridged packets pass through pf(4) twice. They can be filtered on any interface, in both directions. For stateful filtering, filtering on only one interface (using `keep state') and passing all traffic on the other interfaces is recommended. A state entry only permits outgoing packets from initial source to destination and incoming packets from initial des- tination to source. Since bridged packets pass through the filter twice with the source and destination addresses reversed between interfaces, two state entries (one for each direction) are required when all inter- faces are filtered statefully. It is unsupported to use filter rules which would generate packets. This applies to rules with return, return-rst, return-icmp, return-icmp6 or synproxy defined. If an IP packet is too large for the outgoing interface the bridge will perform IP fragmentation. This can happen when bridge members have dif- ferent MTUs or when IP fragments are reassembled by pf(4). Non-IP pack- ets which are too large for the outgoing interface will be dropped. If the LINK2 flag is set on the bridge interface, the bridge will also perform transparent ipsec(4) processing on the packets (encrypt or de- crypt them), according to the policies set with the ipsecadm(8) command by the administrator. If appropriate security associations (SAs) do not exist, any key management daemons such as isakmpd(8) that are running on the bridge will be invoked to establish the necessary SAs. These daemons have to be configured as if they were running on the host whose traffic they are protecting (i.e., they need to have the appropriate authentica- tion and authorization material, such as keys and certificates, to imper- sonate the protected host(s). SEE ALSO errno(2), ioctl(2), arp(4), gif(4), ip(4), ip6(4), ipsec(4), netintro(4), pf(4), bridgename.if(5), brconfig(8), ipsecadm(8), isakmpd(8) HISTORY The brconfig(8) command and the bridge kernel interface first appeared in OpenBSD 2.5. AUTHORS The brconfig(8) command and the bridge kernel interface were written by Jason L. Wright <jason@thought.net> as part of an undergraduate indepen- dent study at the University of North Carolina at Greensboro. OpenBSD 3.4 February 26, 1999 7